This article was downloaded by:
On: 24 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713597274

Salt Complex Bases as New Initiators in the Polymerization of Methyl Methacrylate

Serge Raynal ${ }^{\text {a }}$; Gilberte Ndebeka ${ }^{\text {b }}$; Paul Caubere ${ }^{\text {b }}$; F. Schue ${ }^{\text {c }}$; J. Sledz ${ }^{\text {c }}$
${ }^{\text {a }}$ Centre de Recherches du Bouchet SNPE, Vert-le-petit, France ${ }^{\text {b }}$ Laboratoire de Chimie Orangique, Université de Nancy, Nancy Cedex, France ${ }^{\text {c }}$ Laboratoire de Chimie Macromoléculaire, Universite des Sciences et Techniques du Languedoc, Montpellier, France

To cite this Article Raynal, Serge , Ndebeka, Gilberte, Caubere, Paul, Schue, F. and Sledz, J.(1983) 'Salt Complex Bases as New Initiators in the Polymerization of Methyl Methacrylate', Journal of Macromolecular Science, Part A, 19: 2, 299 309
To link to this Article: DOI: 10.1080/00222338308069442
URL: http://dx.doi.org/10.1080/00222338308069442

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Salt Complex Bases as New Initiators in the Polymerization of Methyl Methacrylate

SERGE RAYNAL
Centre de Recherches du Bouchet SNPE
91710 Vert-le-petit, France

GIL BERTE NDEBEKA and PAUL CAUBERE
Laboratoire de Chimie Orangique
Université de Nancy
54037 Nancy, Cedex, France
F. SCHUE and J. SLEDZ

Laboratoire de Chimie Macromoléculaire
Université des Sciences et Techniques du Languedoc
34060 Montpellier, France

ABSTRACT

The stereoregularity of poly(methyl methacrylate)s obtained with salt complex bases ($\mathrm{MNH}_{2}-\mathrm{MZ}$) in various solvents was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. Poly(methyl methacrylate)s produced by salt complex bases are mostly heterotactic and obey Bernoullian statistics.

INTRODUCTION

Previously we reported the polymerization of methyl methacrylate (MMA), by new complex bases [1]. It was concluded that poly(methyl methacrylate)s produced by these catalysts are mostly hetero and/or syndiotactic and obey Bernoullian statistics. In this paper we report the effect of salt complex bases [2,3] constituted by an alkali amide and an organic salt with different cations or the same cation ($\mathrm{MNH}_{2}-$ $M^{\prime} Z$) in the anionic polymerization of methyl methacrylate in the stereoregularity of the polymer.

EXPERIMENTAL

Degussa broken sodamide was used, washed several times with the solvent of the reaction, and ground in a mortar under the same solvent. Fluka lithium amide was used as such. Potassium amide was prepared from potassium metal and liquid ammonia according to a previous publication [4]. Badisch Anilin reagent grade THF and DMF were distilled from sodium or benzophenone-sodium before use. Toluene, thiophene-free benzene, and hexane were refluxed on sodium metal, then distilled and kept on sodium wire. Salts were either commercial Fluka or Prolabo.

Methyl methacrylate was distilled on calcium hydride under argon or high vacuum.

Salt Complex Bases Preparation

The salt was added to a suspension of the alkali amide in the chosen solvent at room temperature. The mixture was then heated for 2 h at $45-50^{\circ} \mathrm{C}$. In the case of solid salt complex bases prepared without solvent, the salt was added to the grinding alkali amide at room temperature; the mixture was then heated for 2 h at $45-50^{\circ} \mathrm{C}$ with stirring.

Polymerization Procedure

In the same reactor used for the preparation of salt complex bases, the polymerizations were carried out under nitrogen or argon. After setting the polymerization temperature, the monomer was introduced with stirring with a hypodermic syringe. The polymerization was stopped by adding a small amount of methanol. The polymer was precipitated by pouring the reaction mixture into a large excess of methanol.

The time of polymerization was 1 h .

TABLE 1. Tacticity of Poly(methyl Methacrylate). Influence of the Ratio (Amide)/(Activating Agent) ${ }^{\text {a }}$

(Amide)	Microstructure (\%)		
(Activating agent)	Isotactic	Heterotactic	Syndiotactic
Amide alone	14	47	39
1	15	50	35
2	12	57	31
4	12	53	35
6	15	50	35
10	15	45	40
12	14	47	39

[^0]NMR Measurements
${ }^{1} \mathrm{H}$-NMR spectra (90 MHz) were measured in 10% polymer solutions in o-dichlorobenzene at $150^{\circ} \mathrm{C}$ with a Varian spectrometer (Model EM-390).

RESULTS AND DISCUSSION

Several experiments on the polymerization of vinyl monomers showed that salt complex bases might be used as initiators of polymerization in solution and in bulk [2, 3]. The best activating agents are the same as those identified by Caubère [2] and Biehl and coworkers [5,6]. Indeed, a strong activation of NaNH_{2} by nitrates and thiocyanates of sodium was observed in THF. The kinetics of polymerization depend on the nature of the activating agent and the polymerization method.

Therefore, to have more information on the mechanism of the polymerization, we wish to report the main results regarding the stereoregularity of the polymers obtained using sodamide, lithium amide, and potassium amide containing salt complex bases. PMMA's were prepared in various solvents and at various temperatures.

TABLE 2. Tacticity of Poly(methyl Methacrylate). Influence of the Solvent ${ }^{\text {a }}$

	Microstructure (\%)		
Solvent	Isotactic	Heterotactic	Syndiotactic
DMF	10	50	40
THF	12	57	31
PhCH3	36	44	20
Ph	35	43	22
Hexane	37	45	18
-	20	50	30

${ }^{\mathrm{a}}$ Temperature of polymerization: $30^{\circ} \mathrm{C}$. Amide: NaNH_{2}. Activating agent: NaNO_{2}. (Amide)/(activating agent) $=2$.

Tacticity of Poly(methyl Methacrylate)

Influence of the (Amide)/(Activating Agent) Ratio
Preliminary experiments have shown that the best activating agent in the salt complex bases was NaNO_{2} [3]. We chose this activating agent in THF. The microstructures obtained are gathered in Table 1. As the ratio (amide)/(activating agent) increases, the microstructure, mainly heterotactic, remains constant, tending to the value observed with the amide alone.

Influence of the Solvent (Table 2)

The polymers obtained are mostly heterotactic, but the isotacticity (or the syndiotacticity) increases (or decreases) when the polarity of the solvent decreases. One can suppose that the complexation between the propagating species and the salt prevails more and more as the polarity of the solvent decreases.

Influence of the Concentration of Monomer (Table 3)

Amerik [7] has shown that in toluene the tacticity of PMMA is influenced by the monomer concentration. The polarity of MMA induces solvatation of the cation leading to an increase of syndiotacticity. The polymers obtained with $\mathrm{NaNH}_{2}-\mathrm{NaNO}_{2}$ in THF are mostly heterotactic, but the isotacticity (or the syndiotacticity) decreases (or increases) with increasing monomer concentration.

TABLE 3. Tacticity of Poly(methyl Methacrylate). Influence of the Monomer Concentration ${ }^{\text {a }}$

(MMA)$\mathrm{mol} \times 10^{-3}$	Microstructure (\%)		
	Isotactic	Heterotactic	Syndiotactic
50	14	56	30
100	12	57	31
200	10	52	38
300	10	50	40
500	11	47	43

$\mathrm{a}_{\text {Temperature of polymerization: } 30^{\circ} \mathrm{C} \text {. Solvent: THF. Amide: }}^{\text {. }}$ NaNH_{2}. Activating agent: NaNO_{2}. (Amide) $/($ activating agent) $=2$.

TABLE 4. Tacticity of Poly(methyl Methacrylate). Influence of the Temperaturea

	Microstructure (\%)		
$\theta\left({ }^{\circ} \mathrm{C}\right)$	Isotactic	Heterotactic	Syndiotactic
40	14	53	33
30	12	57	31
0	13	55	32
-20	11	54	35
-40	12	55	33
-60	10	56	34
-78	9	53	38

${ }^{\mathrm{a}}$ Solvent: THF. Amide: NaNH_{2}. Activating agent: NaNO_{2}. (Amide)/(activating agent) $=2$.

Influence of the Temperature (Table 4)
Pascault [8], Inoue [9], and Schulz [10] have shown that in polar media, and also for the same counterion, a decrease in temperature leads to an increase in syndiotacticity. Such a variation, though very small, was observed without initiator.
TABLE 5. Tacticity of Poly(methyl Methacrylate). Influence of the Activating Agent, the Amide, and the Solvent ${ }^{\text {a }}$

Solvent		Microstructure (\%)								
		THF			PhCH_{3}			Without solvent		
Initiator	Activating agent	Isotactic	Heterotactic	Syndiotactic	Isotactic	Heterotactic	Syndiotactic	Isotactic	Heterotactic	Syndiotactic
LiNH_{2}	-	9	30	61	62	27	11	58	32	10
	NaNO_{2}	16	50	34	35	49	16	29	50	21
	NaSCN	25	53	22	40	47	13	30	49	21
	NaCNO	26	56	18	36	49	15	29	50	21
	NaCN	24	55	21	35	49	16	31	48	21
	KNO_{2}	12	54	34	26	47	27	20	50	30
	KSCN	17	55	28	30	43	27	21	54	25
	KCNO	18	53	29	34	44	22	24	50	26
	KCN	20	50	30	32	50	18	25	52	23
NaNH_{2}	-	14	47	39	42	41	17	23	53	24
	NaNO_{2}	12	57	31	36	44	20	20	50	30

药

NaSCN
NaCNO
NaCN
KNO
2
KSCN
KCNO
KCN
-
NaNO_{2}
NaSCN^{2}
NaCNO^{2}
NaCN^{2}
KNO
2

N
${ }^{\mathrm{a}}$ Temperature of polymerization: $30^{\circ} \mathrm{C}$. (Amide)/(Activating agent) $=2$.
TABLE 6. Persistence Ratio ρ and Mean Lengths of the Isotactic (μ_{i}) and Syndiotactic (μ_{s}) Sequences ${ }^{\mathbf{a}}$

Solvent		THF			PhCH_{3}			Without solvent		
Initiator	Activating agent									
		ρ	μ_{i}	μ_{s}	ρ	μ_{i}	μ_{s}	ρ	μ_{i}	μ_{s}
LiNH2	-	1.22	1.600	5.067	1.37	5.592	1.815	1.20	4.625	1.625
	NaNO_{2}	0.97	1.640	2.360	0.98	2.428	1.653	0.99	2.160	1.840
	NaSCN	0.94	1.943	1.830	0.99	2.702	1.553	1.01	2.224	1.857
	NaCNO	0.89	1.929	1.643	0.98	2.469	1.612	0.99	2.160	1.840
	NaCN	0.92	1.873	1.764	0.98	2.429	1.653	1.03	2.292	1.875
	KNO_{2}	0.88	1.444	2.259	1.06	2.106	2.149	0.99	1.800	2.200
	KSCN	0.90	1.618	2.018	1.16	2.395	2.256	0.93	1.778	1.926
	KCNO	0.93	1.679	2.094	1.12	2.545	2.000	1.00	1.960	2.040
	KCN	0.99	1.800	2.200	0.98	2.280	1.720	1.01	1.962	2.077
NaNH_{2}	-	1.00	1.596	2.660	1.14	3.049	1.829	0.94	1.868	1.906
	NaNO_{2}	0.85	1.421	2.088	1.10	2.636	1.909	0.99	1.800	2.200
	NaSCN	0.92	1.778	1.926	1.11	2.814	1.837	1.00	2.306	1.775
	NaCNO	0.90	1.618	2.018	1.29	2.947	2.316	1.00	1.920	2.080
	NaCN	0.91	1.836	1.800	1.13	2.905	1.857	1.00	2.000	2.000

0.97	1.784	2.137
0.99	1.760	2.240
0.99	1.800	2.200
0.99	1.760	2.240
0.99	2.160	1.840
0.94	1.654	2.192
0.94	1.755	2.019
0.94	1.588	2.333
0.92	1.667	2.037
0.98	1.612	2.469
1.03	1.622	2.822
0.99	1.625	2.542
1.00	1.596	2.660

2.038	1.807
1.906	1.868
1.846	2.000
1.960	2.040
2.800	2.200
1.979	2.277
2.155	2.289
1.917	2.250
1.898	2.184
1.560	2.440
1.453	2.321
1.638	2.617
1.542	2.208

2.273
2.148
2.107
2.069
2.360
2.273
2.260
2.245
2.259
2.750
3.136
2.911
3.186

[^1]\sum_{z}^{N}

Influence of the Activating Agent, the Amide, and the Solvent Table 5)

We have associated lithium, sodium, and potassium amides with different salts. The polymers obtained have a microstructure which is mainly heterotactic. Moreover, the association of an amide and salts with different cations leads us to believe that we have mixed aggregates [2]:

Similar cases have been obse ved when alkali alkoxides are added to living polymer [11-13].

We can also think of another possibility by forming two complexes, each possessing a different cation:

Chain Statistics (Table 6)

The persistence ratio ρ as well as the mean lengths of the isostatic (μ_{i}) and syndiotactic (μ_{s}) sequences are gathered in Table 6.

The persistence ratio is near unity in THF, in toluene, and in the absence of solvent, indicating that the mechanism of polymerization obeys Bernoullian statistics.

The values of μ_{i} and μ_{s} indicate the presence of very short isotactic and syndiotactic sequences.

CONCLUSIONS

We note that polymethyl methacrylates produced by salt complex bases are mostly hetero and/or syndiotactic, and generally independent
of the nature of the reaction parameters. We observe that activating agents influence the initiation and the propagation rates [3] but do not influence the nature of the polymers formed.

During the propagation step, the salt, by complexation of the cation maintains a sufficient electron density to propagate polymerization but are too far from the active site to have a steric influence on the pathway of polymerization. Moreover, we note that the influence of salt in salt complex bases is less important than that of alkoxides in complex bases.

REFERENCES

[1] S. Raynal, G. Ndebeka, P. Caubère, J. Sledz, and F. Schue, J. Macromol. Sci.-Chem., A18, 313 (1982).
[2] P. Caubère, Top. Curr. Chem., 73, 50 (1978).
[3] S. Raynal, S. Lecolier, G. Ndebeka, and P. Caubère, Polymer, 23, 283 (1982).
[4] \bar{C}. R. Hausser and W. R. Dumnavant, Org. Syn. Coll., 4, 962 (1963).
[5] E. R. Biehl, E. Nieh, and K. C. Hsu, J. Org. Chem., 34, 3595 (1969).
[6] E. R. Biehl, K. C. Hsu and E. Nieh, Ibid., 35, 2454 (1970).
[7] Y. Amerik, W. F. Reynolds, and J. E. Guillet, J. Polym. Sci., Part A-1, 9, 531 (1971).
[8] J. P. Pascault, Y. Kawak, J. Gole, and Q. T. Pham, Eur. Polym. J., 10, 1107 (1974).
[9] Y. Inoue, R. Châjo, and A. Nishioka, Ibid., 2, 13 (1971).
[10] G. Lohr and G. V. Schulz, Eur. Polym. J., 10, 121 (1974).
[11] T. C. Cheng, A. F. Halasa, and D. T. Tate, J. Polym. Sci., Part A-1, 9, 2493 (1971).
[12] T. C. Cheng, A. F. Halasa, and D. T. Tate, J. Polym. Sci., Polym. Chem. Ed., 11, 253 (1973).
[13] T. C. Cheng and A. F. Halasa, Bid., 14, 573 (1976).

Accepted by editor April 5, 1982
Received for publication May 3, 1982

[^0]: ${ }^{\mathrm{a}}$ Temperature of polymerization: $30^{\circ} \mathrm{C}$. Solvent: THF. Amide: NaNH_{2}. Activating agent: NaNO_{2}.

[^1]: ${ }^{\mathrm{a}}$ Temperature of polymerization: $30^{\circ} \mathrm{C}$. (Amide)/(activating agent) $=2$.

